数学学科Seminar第2471讲 Andrews-Beck partition statistics(Andrews-Beck 分拆统计量)

创建时间:  2023/10/12  龚惠英   浏览次数:   返回

报告题目(Title):Andrews-Beck partition statistics(Andrews-Beck 分拆统计量)

报告人 (Speaker):毛仁荣 副教授 苏州大学

报告时间(Time):2023年10月14日 15:00

报告地点 (Place):校本部A123

邀请人(Inviter):陈旦旦

主办部门:永利数学系

报告摘要:

Let $NT(m,k,n)$ (Andrews-Beck partition statistics) denote the total number of parts in the partitions of $n$ with rank congruent to $m$ modulo $k$. Andrews recently provided a $q$-series proof of congruences for $NT(m,k,n)$ modulo $5$ and $7$. Motivated by Andrews’ works, Andrews-Beck partition statistics are widely studied by many authors recently. In this talk, we give a brief introduction to these partition statistics.

上一条:数学学科Seminar第2472讲 极大函数交换子的若干研究进展

下一条:物理学科Seminar第622讲 极早期宇宙的非微扰现象


数学学科Seminar第2471讲 Andrews-Beck partition statistics(Andrews-Beck 分拆统计量)

创建时间:  2023/10/12  龚惠英   浏览次数:   返回

报告题目(Title):Andrews-Beck partition statistics(Andrews-Beck 分拆统计量)

报告人 (Speaker):毛仁荣 副教授 苏州大学

报告时间(Time):2023年10月14日 15:00

报告地点 (Place):校本部A123

邀请人(Inviter):陈旦旦

主办部门:永利数学系

报告摘要:

Let $NT(m,k,n)$ (Andrews-Beck partition statistics) denote the total number of parts in the partitions of $n$ with rank congruent to $m$ modulo $k$. Andrews recently provided a $q$-series proof of congruences for $NT(m,k,n)$ modulo $5$ and $7$. Motivated by Andrews’ works, Andrews-Beck partition statistics are widely studied by many authors recently. In this talk, we give a brief introduction to these partition statistics.

上一条:数学学科Seminar第2472讲 极大函数交换子的若干研究进展

下一条:物理学科Seminar第622讲 极早期宇宙的非微扰现象

Baidu
sogou