数学学科Seminar第2643讲 大尺度反问题的混合投影法

创建时间:  2024/04/23  龚惠英   浏览次数:   返回

报告题目 (Title):Hybrid Projection Methods for Solution Decomposition in Large-Scale Bayesian Inverse Problems(大尺度反问题的混合投影法)

报告人 (Speaker):姜嘉骅 助理教授(伯明翰大学)

报告时间 (Time):2024年4月26日 (周五) 10:00

报告地点 (Place):校本部GJ403

邀请人(Inviter):纪丽洁

主办部门:永利数学系

摘要:We develop hybrid projection methods for computing solutions to large-scale inverse problems, where the solution represents a sum of different stochastic components. Such scenarios arise in many imaging applications where the reconstructed solution can be represented as a combination of two or more components and each component contains different smoothness or stochastic properties. We focus on the scenario where the solution is a sum of a sparse solution and a smooth solution. For computing solution estimates, we develop hybrid projection methods for solution decomposition that are based on a combined flexible and generalized Golub–Kahan process. Numerical results from photoacoustic tomography and atmospheric inverse modeling demonstrate the potential for these methods to be used for anomaly detection.

上一条:永利核心数学研究所——几何与分析综合报告第76讲 相对展开图、Banach空间中的度量嵌入和高指标问题

下一条:数学学科Seminar第2642讲 平均场交互粒子系统在全变差距离下的长时间混沌传播


数学学科Seminar第2643讲 大尺度反问题的混合投影法

创建时间:  2024/04/23  龚惠英   浏览次数:   返回

报告题目 (Title):Hybrid Projection Methods for Solution Decomposition in Large-Scale Bayesian Inverse Problems(大尺度反问题的混合投影法)

报告人 (Speaker):姜嘉骅 助理教授(伯明翰大学)

报告时间 (Time):2024年4月26日 (周五) 10:00

报告地点 (Place):校本部GJ403

邀请人(Inviter):纪丽洁

主办部门:永利数学系

摘要:We develop hybrid projection methods for computing solutions to large-scale inverse problems, where the solution represents a sum of different stochastic components. Such scenarios arise in many imaging applications where the reconstructed solution can be represented as a combination of two or more components and each component contains different smoothness or stochastic properties. We focus on the scenario where the solution is a sum of a sparse solution and a smooth solution. For computing solution estimates, we develop hybrid projection methods for solution decomposition that are based on a combined flexible and generalized Golub–Kahan process. Numerical results from photoacoustic tomography and atmospheric inverse modeling demonstrate the potential for these methods to be used for anomaly detection.

上一条:永利核心数学研究所——几何与分析综合报告第76讲 相对展开图、Banach空间中的度量嵌入和高指标问题

下一条:数学学科Seminar第2642讲 平均场交互粒子系统在全变差距离下的长时间混沌传播

Baidu
sogou