数学学科Seminar第2568讲 有效的谱Galerkin方法求解三维复杂区域偏微分方程

创建时间:  2023/11/16  龚惠英   浏览次数:   返回

报告题目 (Title):Efficient spectral-Galerkin methods for PDEs in three-dimensional complex geometries(有效的谱Galerkin方法求解三维复杂区域偏微分方程)

报告人 (Speaker):王中庆 教授(上海理工大学)

报告时间 (Time):2023年11月17日(周五)13:00-15:30

报告地点 (Place):腾讯会议:968-592-891

邀请人(Inviter):吴 华

主办部门:永利数学系

报告摘要:In this paper, we introduce a new spherical coordinate transformation, which transforms three-dimensional curved geometries into a unit sphere. This transformation plays an important role in spectral approximations of differential equations in three-dimensional curved geometries. Some basic properties of the spherical coordinate transformation are given. As examples, we consider an elliptic equation in three-dimensional curved geometries, prove the existence and uniqueness of the weak solution, construct the Fourier-Legendre spectral-Galerkin scheme and analyze the optimal convergence of numerical solutions under $H^1$-norm. We also apply the suggested approach to the Gross–Pitaevskii equation in three-dimensional curved geometries and present some numerical results. The proposed algorithm is very effective and easy to implement for problems in three-dimensional curved geometries. Abundant numerical results show that our spectral-Galerkin method possesses high order accuracy.

上一条:数学学科Seminar第2569讲 双曲守恒律方程组的高精度格式

下一条:物理学科Seminar第633讲 新型太阳能电池的太赫兹光谱学研究


数学学科Seminar第2568讲 有效的谱Galerkin方法求解三维复杂区域偏微分方程

创建时间:  2023/11/16  龚惠英   浏览次数:   返回

报告题目 (Title):Efficient spectral-Galerkin methods for PDEs in three-dimensional complex geometries(有效的谱Galerkin方法求解三维复杂区域偏微分方程)

报告人 (Speaker):王中庆 教授(上海理工大学)

报告时间 (Time):2023年11月17日(周五)13:00-15:30

报告地点 (Place):腾讯会议:968-592-891

邀请人(Inviter):吴 华

主办部门:永利数学系

报告摘要:In this paper, we introduce a new spherical coordinate transformation, which transforms three-dimensional curved geometries into a unit sphere. This transformation plays an important role in spectral approximations of differential equations in three-dimensional curved geometries. Some basic properties of the spherical coordinate transformation are given. As examples, we consider an elliptic equation in three-dimensional curved geometries, prove the existence and uniqueness of the weak solution, construct the Fourier-Legendre spectral-Galerkin scheme and analyze the optimal convergence of numerical solutions under $H^1$-norm. We also apply the suggested approach to the Gross–Pitaevskii equation in three-dimensional curved geometries and present some numerical results. The proposed algorithm is very effective and easy to implement for problems in three-dimensional curved geometries. Abundant numerical results show that our spectral-Galerkin method possesses high order accuracy.

上一条:数学学科Seminar第2569讲 双曲守恒律方程组的高精度格式

下一条:物理学科Seminar第633讲 新型太阳能电池的太赫兹光谱学研究

Baidu
sogou