数学学科Seminar第2521讲 Hirota双线性方法在构造可积系统有理解与半有理解中的应用

创建时间:  2023/11/02  龚惠英   浏览次数:   返回

报告题目 (Title):The application of Hirota's bilinear method in the construction of rational and semi-rational solutions of integrable equations (Hirota双线性方法在构造可积系统有理解与半有理解中的应用)

报告人 (Speaker):虞国富 教授(上海交通大学)

报告时间 (Time):2023年11月02日 15:00-17:30

报告地点 (Place):校本部D204

邀请人(Inviter):张大军 教授

主办部门:永利数学系

报告摘要:

In this talk, we will present some review of the application of Hirota's bilinear method in the construction of rational and semi-rational solutions of integrbale equations. We investigate a special two-dimensional lattice equation proposed by Blaszak and Szum and so-called Leznov lattice based on the Hirota's bilinear method. We derive solitons, breathers and rational solutions to the lattice equations both on the constant and periodic background. These solutions are given in terms of determinants whose matrix elements have simple algebraic expressions. We show that rational solutions are given in terms of Schur polynomials and demonstrate that these rational solutions exhibit algebraic solitons and lump solitons. We explore the asymptotic analysis to the algebraic solitons.

上一条:数学学科Seminar第2522讲 分数阶微分方程:分析与数值计算

下一条:数学学科Seminar第2520讲 基于点的网络通道修剪


数学学科Seminar第2521讲 Hirota双线性方法在构造可积系统有理解与半有理解中的应用

创建时间:  2023/11/02  龚惠英   浏览次数:   返回

报告题目 (Title):The application of Hirota's bilinear method in the construction of rational and semi-rational solutions of integrable equations (Hirota双线性方法在构造可积系统有理解与半有理解中的应用)

报告人 (Speaker):虞国富 教授(上海交通大学)

报告时间 (Time):2023年11月02日 15:00-17:30

报告地点 (Place):校本部D204

邀请人(Inviter):张大军 教授

主办部门:永利数学系

报告摘要:

In this talk, we will present some review of the application of Hirota's bilinear method in the construction of rational and semi-rational solutions of integrbale equations. We investigate a special two-dimensional lattice equation proposed by Blaszak and Szum and so-called Leznov lattice based on the Hirota's bilinear method. We derive solitons, breathers and rational solutions to the lattice equations both on the constant and periodic background. These solutions are given in terms of determinants whose matrix elements have simple algebraic expressions. We show that rational solutions are given in terms of Schur polynomials and demonstrate that these rational solutions exhibit algebraic solitons and lump solitons. We explore the asymptotic analysis to the algebraic solitons.

上一条:数学学科Seminar第2522讲 分数阶微分方程:分析与数值计算

下一条:数学学科Seminar第2520讲 基于点的网络通道修剪

Baidu
sogou