报告题目 (Title):“发散”Ramanujan型超同余的一个新的q-模拟(A new q-analogue of a ``divergent" Ramanujan-type supercongruence)
报告人 (Speaker): 郭军伟 教授(淮阴师范学院)
报告时间 (Time):2023年11月1日(周三) 15:00—16:00
报告地点:校本部F309
邀请人(Inviter):王晓霞
主办部门:永利数学系
报告摘要:Guillera and Zudilin proved the following ``divergent" Ramanujan- type supercongruence: for any odd prime p, \sum_{k=0}^{p-1} \frac{(\frac{1}{2})_k^3}{k!^3}(3k+1)2^{2k} \equiv p\pmod{p^3}. Sun further conjectured that the above supercongruence is also true modulo p^4 for p>3, and a q-analogue of this result was given by the author in an early paper. In this paper, we establish a new q-analogue of Sun's supercongruence by employing the method of ``creative microscoping", developed by the author and Zudilin in 2019.