数学学科Seminar第2501讲 具有松弛的可压缩不混溶两相动力学的锐界面极限

创建时间:  2023/10/25  龚惠英   浏览次数:   返回

报告题目 (Title):Sharp Interface Limit for Compressible Immiscible Two-Phase Dynamics with Relaxation(具有松弛的可压缩不混溶两相动力学的锐界面极限)

报告人 (Speaker):施小丁 教授 (北京化工大学)

报告时间 (Time):2023年10月31日(周二)10:00

报告地点 (Place):腾讯会议:890 929 708 会议密码:6789

邀请人(Inviter):朱佩成 教授

主办部门:永利数学系

报告摘要:In this talk, the compressible immiscible two-phase flow with relaxation is investigated, this model can be regarded as a natural modification of Jin-Xin relaxation scheme proposed and developed by S.Jin and Z.P.Xin([Comm.Pure Appl.Math., 48,1995]) in view of the numerical approximation of conservation laws. Given any entropy solution consists of two different families of shocks interacting at some positive time for the standard two-phase compressible Euler equations, it is proved that such entropy solution is the sharp interface limit for a family global strong solutions of the modified Jin-Xin relaxation scheme for Navier-Stokes/Allen-Cahn system, here the relaxation time is selected as the thickness of the interface, weighted estimation and improved antiderivative method are used in the proof.

上一条:数学学科Seminar第2502讲 使用虚拟中心点和有效条件数的自适应MPS-MFS方法

下一条:数学学科Seminar第2500讲 混合气体玻尔兹曼方程的流体动力极限


数学学科Seminar第2501讲 具有松弛的可压缩不混溶两相动力学的锐界面极限

创建时间:  2023/10/25  龚惠英   浏览次数:   返回

报告题目 (Title):Sharp Interface Limit for Compressible Immiscible Two-Phase Dynamics with Relaxation(具有松弛的可压缩不混溶两相动力学的锐界面极限)

报告人 (Speaker):施小丁 教授 (北京化工大学)

报告时间 (Time):2023年10月31日(周二)10:00

报告地点 (Place):腾讯会议:890 929 708 会议密码:6789

邀请人(Inviter):朱佩成 教授

主办部门:永利数学系

报告摘要:In this talk, the compressible immiscible two-phase flow with relaxation is investigated, this model can be regarded as a natural modification of Jin-Xin relaxation scheme proposed and developed by S.Jin and Z.P.Xin([Comm.Pure Appl.Math., 48,1995]) in view of the numerical approximation of conservation laws. Given any entropy solution consists of two different families of shocks interacting at some positive time for the standard two-phase compressible Euler equations, it is proved that such entropy solution is the sharp interface limit for a family global strong solutions of the modified Jin-Xin relaxation scheme for Navier-Stokes/Allen-Cahn system, here the relaxation time is selected as the thickness of the interface, weighted estimation and improved antiderivative method are used in the proof.

上一条:数学学科Seminar第2502讲 使用虚拟中心点和有效条件数的自适应MPS-MFS方法

下一条:数学学科Seminar第2500讲 混合气体玻尔兹曼方程的流体动力极限

Baidu
sogou