数学学科Seminar第2441讲 Carlitz公式的q-移位算子表示

创建时间:  2023/08/29  龚惠英   浏览次数:   返回

报告题目 (Title):Carlitz公式的q-移位算子表示(Representing Carlitz Formula with q-Shift Operator)

报告人(Speaker):杨墩坤

报告时间 (Time):2023年8月31日(周四)10:00

报告地点(Place):校本部F309

邀请人(Inviter):陈旦旦

主办部门:永利数学系

报告摘要:We present a new formula for the $q$-shift operator, building on the techniques by Liu and Sears. This formula provides fresh proof of the Carlitz formula and extends it naturally. As applications, we derive an equivalent form of the generalized Carlitz formula to prove two q-congruences on cyclotomic polynomials, which expand upon the results of Guo et al.

上一条:今日化学系列报告第387讲 手性大环体系的组装与圆偏振发光

下一条:数学学科Seminar第2440讲 q微分算子的简介


数学学科Seminar第2441讲 Carlitz公式的q-移位算子表示

创建时间:  2023/08/29  龚惠英   浏览次数:   返回

报告题目 (Title):Carlitz公式的q-移位算子表示(Representing Carlitz Formula with q-Shift Operator)

报告人(Speaker):杨墩坤

报告时间 (Time):2023年8月31日(周四)10:00

报告地点(Place):校本部F309

邀请人(Inviter):陈旦旦

主办部门:永利数学系

报告摘要:We present a new formula for the $q$-shift operator, building on the techniques by Liu and Sears. This formula provides fresh proof of the Carlitz formula and extends it naturally. As applications, we derive an equivalent form of the generalized Carlitz formula to prove two q-congruences on cyclotomic polynomials, which expand upon the results of Guo et al.

上一条:今日化学系列报告第387讲 手性大环体系的组装与圆偏振发光

下一条:数学学科Seminar第2440讲 q微分算子的简介

Baidu
sogou